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Abstract. In this study, one-dimensional transient wave propagation in multilayered functionally graded media is
investigated. The multilayered medium consists of N different layers of functionally graded materials (FGMs), i.e.,
it is assumed that the stiffness and the density of each layer are varying continuously in the direction perpendic-
ular to the layering, but isotropic and homogeneous in the other two directions. The top surface of the layered
medium is subjected to a uniform dynamic in-plane time-dependent normal stress; whereas, the lower surface of
the layered medium is assumed free of surface tractions or fixed. Moreover, the multilayered medium is assumed
to be initially at rest and its layers are assumed to be perfectly bonded to each other. The method of char-
acteristics is employed to obtain the solutions of this initial-boundary-value problem. The numerical results are
obtained and displayed in curves showing the variation of the normal stress component with time. These curves
reveal clearly the scattering effects caused by the reflections and refractions of waves at the boundaries and at the
interfaces of the layers. The curves also display the effects of non-homogeneity in the wave profiles. The curves
further show that the numerical technique applied in this study is capable of predicting the sharp variations in
the field variables in the neighborhood of the wave fronts. By suitably adjusting the material constants, solutions
for the case of isotropic, homogeneous and linearly elastic multilayered media and for some special cases includ-
ing two different functionally graded layers are also obtained. Furthermore, solutions for some special cases are
compared with the existing solutions in the literature; very good agreement is found.

Key words: functionally graded materials, method of characteristics, plane layered media, transient dynamic
response

1. Introduction

Functionally graded materials are a new generation of engineering materials which are con-
tinuously or discretely changing their thermal and mechanical properties at the macroscopic
or continuum scale [1, pp. 107–113]. Functionally graded materials are increasingly expected
to be used in structural applications where high strength-to-weight and stiffness-to-weight
ratios are required. These applications involving severe thermal gradients, ranging from ther-
mal structures in advanced aircraft and aerospace engines to microelectronics. Example appli-
cations, including pressure vessels and pipes in nuclear reactors, can be found in the review
papers [2] and [3]. In such applications a metallic-rich region of a functionally graded material
is exposed to low temperature with a gradual microstructural transition in the direction of the
temperature gradient, while a ceramic-rich region is exposed to high temperature. Among a
few recent books including a comprehensive treatment of the science and technology of func-
tionally graded materials, one can mention [4, pp. 29–63] and [5, pp. 112–120].

Several models for the case where a dynamic load is applied to the outer boundaries of
a functionally graded composite body have been studied in the literature. Five models, for
example, are presented in [6]; two of these simulate fiber phases in which the material is
modelled as layers of different volume fractions and three simulate particle phases, where the
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material properties are considered to change continuously in the thickness direction. Accord-
ingly, two models may be used to deal with transient dynamic response in the inhomoge-
neous bodies; they are the homogeneous layered model and the inhomogeneous continuous
model. In the first type, the FGM layer is subdivided into a large number of homogeneous
thin layers, each of which has its own constant volume fraction [7]. In the second kind, the
FGM plate is subdivided into inhomogeneous layers whose material properties are varying
continuously in the direction perpendicular to the layering [8, 9]. In these papers Ohyoshi has
developed an analytical method using an approach involving linearly inhomogeneous layer
elements to investigate waves through inhomogeneous structures.

Due to the fact that the material properties of functionally graded materials are functions
of one or more space variables, wave-propagation problems related to functionally graded
materials are generally difficult to analyze without employing some numerical approaches.
Numerical solutions of one-dimensional stress-wave propagation in an FGM plate subjected
to shear or normal tractions are discussed in [10–13]. In these studies, the material proper-
ties are assumed to vary in the thickness direction and the FGM plate is divided into linearly
inhomogeneous elements [10] or quadratic inhomogeneous layer elements [11, 12], whereas in
[13], the material properties of the FGM plate throughout the thickness direction are assumed
to be functions with arbitrary powers. Two-dimensional transient-wave-propagation problems
in an FGM plate have, recently, been discussed by applying a composite wave-propagation
algorithm in [14, 15], and using finite elements with graded properties in [16] to simulate elas-
tic wave propagation in continuously nonhomogeneous materials. However, to the authors’
the best knowledge, the transient dynamic response of a multilayered FGM body subjected
to a uniform pressure wavelet has not been investigated in the literature.

In this paper, the method of characteristics is employed to obtain the solutions.
This method has been employed effectively in investigating one- and two-dimensional
transient-wave-propagation problems in multilayered plane, cylindrical and spherical homoge-
neous layered media [17–19]. In these references, the multilayered medium consists of N layers
of isotropic, homogeneous and linearly elastic or viscoelastic material with one or two relaxa-
tion times. A brief review on combining the method of characteristics with Fourier transforms
to investigate two-dimensional transient wave propagation in viscoelastic homogeneous layered
media can be found in [20–21]. It is well known that, for the one-dimensional homogeneous
case, the characteristic manifold consists of straight lines in the zt-plane (here, t : time; z: space
variable) and the canonical equations holding on them are ordinary differential equations which
can be integrated accurately using a numerical method, e.g. an implicit trapezoidal-rule formula
[17–21]. However, in functionally graded material the characteristic manifold consists of non-
linear curves in the zt-plane and the canonical equations can be integrated approximately along
the characteristic curves by employing a small-time discretization. This step-by-step numerical
technique is capable of describing the sharp variation of the disturbance in the neighborhood of
the wave front without showing any sign of instability. Hence, as will be shown in this study, the
method of characteristics can be used conveniently for one-dimensional transient wave propa-
gation through functionally graded materials, and we believe that it can be combined with a
transformation technique to handle two-dimensional transient wave propagation in multilayered
functionally graded materials, as well.

2. Formulation of the problem

The multilayered medium considered in this study is of thickness H and it consists of N

different FGM layers. It is referred to a Cartesian co-ordinate system (x, y, z), in which the
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xy-plane coincides with the upper surface of the layered medium and the z-axis is directed
downward; Figure 1. The material properties in each layer are assumed to be vary contin-
uously in the z-direction, but isotropic and homogeneous in the other two directions. The
upper surface of the layered medium is subjected to a uniform time-dependent pressure wave-
let; the lower surface is assumed to be either free of surface traction or fixed, or is subjected
to a surface traction similar to that applied at the upper surface; Figure 1. The FGM layers
of the composite medium are assumed to be perfectly bonded to each other. Furthermore, the
layered medium is assumed to be initially at rest. In the formulation, it is assumed that the
surface traction is an arbitrary function of time t , but uniform and extends to infinity over
the xy-plane. Thus, the problem is a one-dimensional plane-strain problem with displacement
components ux and uy vanishing identically and the displacement component in the z-direc-
tion being a function of z and t , i.e.,

uz =uz(z, t), ux =uy =0. (1)

Thus, the stress equation of motion, in the absence of body forces, for a typical FGM layer
can be written as

∂τzz

∂z
=ρ

∂vz

∂t
, (2)

where τzz is the normal-stress component in the z-direction, ρ is the mass density of the typ-
ical layer considered and vz is the component of the particle velocity in z-direction, i.e.,

vz = ∂uz

∂t
. (3)

The non-vanishing stress component can be written as

τzz = cεzz, (4)

where εzz is the strain component which is related to the displacement component uz through

εzz = ∂uz

∂z
. (5)
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In (2) and (4) the stiffness c (c = 2µ + λ) and the mass density ρ of the medium are
assumed to be vary continuously in the z-direction, but homogeneous and isotropic in the x

and y-directions, that is,

c= (2µ0 +λ0) (a +bz)m , ρ =ρ0(a +bρz)n, (6)

where a, b and bρ are dimensionless constants representing the gradients of the typical FGM
layer. The parameters c0 (c0 = 2µ0 +λ0) and ρ0 are, respectively, the stiffness and mass den-
sity at a referred surface of the typical layer. Similar forms of (6) with a =1 and m=n=1 in
[10], with a=1 and m=n=2 [11, 12] and with a=1 and b=bρ [13], were used in investigating
one-dimensional transient wave propagation in an FGM plate subjected to a uniform pressure
wavelet at one of its outer boundaries. Thus, this new model, given in (6), has the ability to
represent all models presented in [10–13]. It will be shown later that the method applied in
this study is applicable for different values of the constants appearing in Equation (6), par-
ticularly for the real constants m and n, whereas in other works it is needed to change the
formulation of the problem according to how these values are changing. This general form
of (6) is selected because it is suitable for a multilayered medium that consists of more than
one FGM layer.

In view of Equation (6), the constitutive Equations (2–5), can be combined in one equiv-
alent equation (wave equation), in terms of the displacement component uz, as

c
∂2uz

∂z2
+ dc

dz

∂uz

∂z
=ρ

∂2uz

∂t2
. (7)

In this paper, it is required to solve (7), satisfying the boundary, initial and interface condi-
tions. The boundary condition at the upper surface (z = 0) of the multilayered medium is a
time-dependent pressure pulse defined as

τzz(0, t)=−pof (t), (8)

where po is the intensity of the applied load and f (t) is a prescribed function of t . The lower
surface (z=H ) is assumed to be either free of surface traction, fixed or it can be assumed to
be subjected to the same loads applied at the upper surface; viz. Equation (8). Hence, the free
or fixed boundary conditions can be written, respectively, as

τzz(H, t)=0 or uz(H, t)=0. (9)

In the method employed in this study, we note that other alternatives for boundary condi-
tions, such as mixed-mixed boundary conditions on both surfaces, i.e., one component of dis-
placement and the other component of the surface traction can be handled with equal ease
on both surfaces. Furthermore, Equation (8) can be replaced by (9) at the upper boundary
and (9) can be replaced by (8) at the lower boundary. The layers of the multilayered medium
are assumed to be perfectly bonded to each other; hence, the interface conditions imply that
the normal stress (τzz) and the displacement (uz) are continuous across the interfaces of the
layers. The multilayered medium is assumed to be initially at rest; hence, all the field variables
are zero at t ≤0. The formulation of the problem is now complete.

In view of Equation (6), the governing field equations, Equations (2–5), are to be applied
to each layer and the solutions will be required to satisfy the interface conditions at the inter-
faces, the boundary conditions at upper and lower surfaces, Equations (8, 9), and quiescent
initial conditions.
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3. Solution of the problem

The solution is obtained by employing the method of characteristics. This technique involves
first writing the hyperbolic differential equation, Equation (7), in view of Equations (2–6) as
a system of first-order governing partial differential equations, in matrix form as

AU,t +BU,z +D=0, (10)

where

A= I, (11)

with I being a (4 × 4) identity matrix. In Equation (10), B is (4 × 4) square matrix with the
elements all zero except

b14 =−c, b24 =−1, b42 =− c

ρ
, (12)

D is a four-dimensional column vector with nonzero elements

d3 =−vz, d4 =−εzz

ρ

(
dc

dz

)
, (13)

and U is a four-dimensional column vector containing the unknown field variables:

U= (τzz, εzz, uz, vz)
T , (14)

where T designates the transpose. In Equation (10), a comma denotes partial differentiation:

U,t = ∂U
∂t

,U,z = ∂U
∂z

. (15)

The second step of the solution procedure involves the determination of the solutions of
Equation (10) for each layer satisfying the conditions at the boundaries, Equations (8–9), at
the interfaces and the zero initial conditions. The system of governing equations, Equation
(10), is hyperbolic, and the solution is constructed by converting it into a system of first-order
ordinary differential equations, each of which is valid along a different family of characteris-
tic curves. These equations, called the canonical equations, are suitable for numerical analysis
because the use of the canonical form makes it possible to obtain the solution by a step-by-
step integration procedure. The convergence and numerical stability of the method are well-
established; see [22, pp. 62–82], [23, pp. 114–130].

The characteristic lines, along which the canonical equations are valid, are governed by the
characteristic equation

det(B−V A)=0, (16)

where V = dz
dt

. Equation (16) yields the eigenvalues Vi(i =1−4), which are

V1 = cp, V2 =−cp, V3 =0, V4 =0, (17)

where

cp =
√

c

ρ
=

√
λ+2µ

ρ
=

√
(2µ0 +λ0) (a +bz)m

ρ0(a +bρz)n
, (18)
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is the dilatational (primary, pressure, irrotational or longitudinal) wave velocity. The charac-
teristic manifold is thus composed of the families of the curves dz

dt
=Vi (i =1−4). The terms

dz
dt

=V1 = cp and dz
dt

=V2 =−cp describe two characteristic families of curves with slopes (cp)
and (−cp), respectively, on the zt-plane. Further, dz

dt
=Vi = 0, (i = 3 − 4) defines straight lines

parallel to the t-axis; Figure 2. The canonical equations are determined from

lTi A
dU
dt

+ lTi D=0, (19)

which holds along dz
dt

= Vi(i = 1 − 4). In Equation (19), d
dt

denotes the total time derivative
along a characteristic line and li is the left-hand eigenvector satisfying the equation

(BT −ViAT )li =0. (20)

In view of Equations (11–12) and (17–18), the linearly independent left-hand set of eigen-
vectors can be determined from Equation (20). When these left-hand eigenvectors, together
with A and D defined in (11) and (13), are substituted in Equation (19), the canonical equa-
tions can be obtained as

Kij

dUj

dt
=FijUj , (i, j =1−4), (21)

where the nonzero elements of Kij and Fij , are

k12 =−cp, k22 = cp, k14 =k24 =k31 =1,

k43 =1, k32 =−c, f12 =f21 = 1
ρ

dc
dz

, f44 =1.
(22)

The canonical equations are then integrated along the characteristic lines as
∫ A

AI

Kij

dUj

dt
dt −

∫ A

AI

FijUj dt =0, (23)

where A and AI are points on the characteristic curves defined, respectively, at current and
previous time steps as shown in the typical integration element inside Figure 2. Taking into
consideration that the coefficients Kij and Fij are functions of z only, the above integration
can be performed easily by using the trapezoidal rule [24, pp. 245–250] as

KijUj (A)−KIjUj (AI )−
(

�t

2

)
{Fij (A)Uj (A)+FIj (AI )Uj (AI )}=0. (24)

Alternately, this equation can be rewritten as

WijUj (A)=MIjUj (AI ), (i, j =1−4), (25)

where

Wij =Kij −
(

�t

2

)
Fij (A), MIj =KIj +

(
�t

2

)
FIj (AI ). (26)

The elements of Kij and Fij are given in Equations (22). In Equations (24–26) there is no
summation performed over the capital index I (I = 1 − 4); therefore, Equation (25) represents
four equations defined by i = 1 − 4 and for each value of the index i, there is a summation
over j which takes the values j = 1 − 4. Thus, when the values of Uj are known at points
AI (I = 1 − 4), the unknown vector at point A,

(
Uj(A), (j =1−4)

)
, can be determined from

(25) taking into consideration that the coefficients of Kij and Fij , which are functions of z

only, can be found easily by the step-by-step numerical procedure discussed below. In other
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words, using the mesh shown inside Figure 2, one finds the field variables at a specific point
along any line parallel to the z-axis in the solution region in terms of the known field vari-
ables defined on the previous line. For this purpose, we refer to the network of the charac-
teristic curves; Figure 2. To compute the components of the unknown vector (Uj , (j =1−4))

presented in (25) at every intersection point between the characteristic curves on the zt-plane,
we start our solution on the network from the z-axis, where the values of all field variables
are zero due to zero initial conditions, and advance into the solution region by computing Uj

at the intersection points of the network between the upper and the lower boundary along the
lines t =�t , t = 2�t , t = 3�t , . . . . . . ., t =Jmax�t . . . . . . etc. To explain this numerical proce-
dure we refer to four different locations of the typical integration element. First, if the typical
integration element is located at the upper boundary, then the first equation of (25), which is
valid along the line AA1 is replaced by the boundary condition applied at the upper bound-
ary. Second, if the integration element is an interior element, then the procedure involves the
determination of the values of the unknown vector at a point A in terms of its values at
A1, A2 and Ai, (i =3−4) using (25). Third, if a point A of an integration element is located
at an interface between two different layers, then the first two equations are replaced by the
interface continuity conditions, whereas, in this case the number of field variables becomes
double at that point. Finally, the second equation of (25) is replaced by the boundary con-
dition applied at the lower boundary, if the typical integration element lies at that boundary.
This procedure is repeated as we proceed along the t-axis, for example along the line t =2�t ,
instead of using the initial conditions along the line t = 0; we use the field variables which
are computed in the previous step along the line t =�t . This process is repeated until we get
results for a sufficient value of t , for example t =Jmax�t , where Jmax is the maximum number
of intervals considered in the t-direction.

4. Numerical results and discussion

First, three examples will be given to verify the validity of the numerical technique employed
in this study. Then, one example involving the dynamic response of an FGM layered medium
consists of more than one FGM layer will be studied.

4.1. Verification problems

4.1.1. Verification problem 1
The first example of verification is a single isotropic, elastic and nonhomogeneous layer
subjected to a uniform normal traction at z = H with a rectangular pulse in time. In our
formulation, the rectangular pulse is simulated by the trapezoidal distribution shown in Fig-
ure 3(b), with e = �t = 0·0122 µs, d = 50 µs and po = −1000 psi. The upper surface (z = 0)
is assumed to be fixed. Numerical results are presented with the following parameters: ρ0 =
0·0733 lbf s2/in4, m=0, n=−2, a =1, b=0, bρ =0·87804, c0 =120×106 psi. These properties
correspond to a constant stiffness and a variable density that starts from ρ0 =0·0733 lbf s2/in4

at the upper surface to ρ =0·000733 lbf s2/in4 at the lower surface (z=H =10·25 in). Numer-
ical treatment of this problem by the use of finite elements with graded properties was given,
recently, in [16]. The solution of this problem in our treatment is obtained as a special case
of a multilayered medium consisting of four layers with thicknesses h(i) =2·5625, where h(i) is
the thickness of the i-th layer. In Figure 3(a), the variation of the normal stress τzz with time
at the location near the middle surface of the plate (z=5·125), is shown. The solution of the
FGM layer is compared with the finite-element solution presented in [16]; a good agreement
is found between the two solutions. The curves of Figure 3(a) clearly display the effects of
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Figure 3. (a) Time variation of the normal stress (τzz) at z=5·125 for a single FGM layer. (b) and (c) Time varia-
tions of the applied load.

reflections from the lower and upper surfaces and the homogeneity effects which are indicated
by (i) the significant difference between the amplitude applied at lower surface and the ampli-
tude of the stress wave in the FGM plate and (ii) the time of the arrival of disturbances in
the FGM layer is earlier than that of the corresponding homogeneous plate whose mass den-
sity is equal to the value at the upper surface. This is because the longitudinal wave velocity
of the FGM plate is higher than that of the corresponding homogeneous plate. The numeri-
cal results further show that the applied numerical technique has the ability of predicting the
sharp variations at the wave fronts without showing any sign of instability or noise.

4.1.2. Verification problem 2
In the second example of verification, a single FGM plate excited by an incident pressure wave
on the bottom surface of the plate is considered. In this example, the numerical computa-
tions have been carried out and the results are displayed in terms of non-dimensional quan-
tities. These dimensionless quantities are taken in terms of the thickness of the FGM plate
(H ) and the density and stiffness at the middle surface of the plate. Thus, the non-dimen-
sional time t = 1 is the time required for the wave velocity at the middle surface to travel once
over the thickness of the corresponding homogeneous plate. Note here that the non-dimensional
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Figure 4. (a) Variation of the non-dimensional normal stress τ zz with non-dimensional time t at the midpoint (z=
0·5). (b) Space variation of non-dimensional density (ρ), stiffness (c) and wave velocity (cp) in terms of material
properties at the midpoint of the FGM plate.
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quantities are designated by bars. This problem has been solved in [10] and [12] using the lin-
early inhomogeneous element and quadratic-layer-element approaches, respectively.

The normal stress applied at the bottom surface of the plate (z=H =1) is given as [10, 12]

τzz(H, t)=−po sin(10πt), (27)

where po =2 is the non-dimensional intensity of the applied surface pressure with 0≤ t ≤0·2,
namely, the pressure wave applied is one cycle of a sine function with t0 =2; Figure 3(c). The
upper surface of the FGM plate is assumed to be free of surface traction. The solution of
this problem in our treatment is obtained as a special case of a multilayered medium con-
sisting of four FGM layers with thicknesses h(i) = H

4 =0·25, where h(i) is the thickness of the
i-th layer. The values of b, bρ and a assigned for the four layers are b=0·5, bρ =0 and a =1
with m=n=1 [10], i.e., the mechanical properties of the linear FGM plate vary linearly in the
thickness direction; Figure 4(b). To investigate how a stress wave propagates, the time history
of the non-dimensional normal stress τ zz at the midpoint in the FGM plate together with that
in a homogeneous plate are shown in Figure 4(a). For the homogeneous plate whose elastic
constants and mass density are equal to the values at the midpoint of the FGM plate, the
gradient constants are taken as a = 1 with bρ = 0 = b. The results obtained from the present
study and those of [10] and [12], which are not shown in Figure 4(a), are almost identical.
The curves of Figure 4(a) clearly display the effects of reflections from the free surfaces of
the plate. Since the pressure wavelet is applied on the lower surface where the wave velocity
of the FGM plate is higher than that of the homogeneous plate, the stress wave propagates
faster in the lower half (0·5 <z< 1). On the other hand, when the stress wave propagates in
the upper half (0<z<0·5) of the FGM plate, the wave velocity in the homogeneous plate is
higher than that of the FGM plate. This can be clearly seen in Figure 4(a) where the time
of the arrival of the disturbances in the FGM layer is earlier than that of the corresponding
homogeneous plate; moreover, the solid line is lagging behind during the time 0<t <0·7, and
then overtaking during 0·7 <t < 1·7. As the time increases, the solid line will again be over-
taken by the dashed line, and so on. Furthermore, in the curves of Figure 4(a) it is observed
that the stress levels in the FGM plate are slightly less than that in the homogeneous plate.
This is because the load is applied on the stiffer side of the FGM plate.

4.1.3. Verification problem 3
In the last example of verification, we present some results for multilayered media consist of
four layers (N =4), denoted as layers 1, 2, 3 and 4, with layer sequence starting from the top
layer, as 1/2/3/4. In these results, we take the geometric and material properties of the four
layers the same (thus, the layered system represents a single homogeneous or nonhomoge-
neous layer). The FGM composite consists of nickel (Ni) and zirconia (ZrO2); on one surface
the layer is pure nickel and on the other surface pure zirconia, and the material properties in-
between these two surfaces vary smoothly in the thickness direction. The material properties
of the constituent materials are given in Table 1. The numerical computations have been car-
ried out and the results are displayed in terms of non-dimensional quantities. These dimen-
sionless quantities are taken in terms of the thickness of the layered medium (H =5 mm), the
density and stiffness at the upper surface (z=0), i.e., the following non-dimensional quantities
will always be true on the top surface of the first layer: (2µ0 +λ0)=ρ0 = cp =1. The bottom
surface (z=H =1) is subjected to a uniform normal stress defined as [13]

τzz(1, t)=−po [H(t)−H(t − t0)] , (28)
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Table 1. Properties of materials used in examples.

Material µ(GPa) λ(GPa) ρ(Kg/m3)

Ni(Nickel) 79·0076 128·9071 8900
ZrO2(Zirconia) 56·7669 110·1946 5331
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Figure 5. (a) Variation of (τzz/po) with t in Ni/ZrO2 FGM composite and in homogeneous layer at z= 0·5 under
free/free boundary conditions. (b) Variation of non-dimensional density (ρ), stiffness (c) and wave velocity (cp) with
z in Ni/ZrO2 FGM composite.

where po is the load intensity and H(t) represents a unit step function with an initial ramp.
The incident pressure wave applied at the bottom surface is equivalent to the trapezoidal dis-
tribution shown in Figure 3(b), where t0 =d and e=�t are taken as 0·2 and 0·001 µs, respec-
tively.

Here, we consider two problems, both are subjected to the trapezoidal pulse given by
Equation (28). These problems are: nickel-zirconia (Ni/ZrO2) FGM composite with free
upper boundary condition and zirconia-nickel (ZrO2/Ni) FGM composite with fixed upper
boundary condition. In the present method, these problems are treated as special cases of the
general formulation for multilayered functionally graded media by assuming that the FGM
composite consists of four similar layers with h(i) = 0·25, (i = 1 − 4), where h(i) is the non-
dimensional thickness of the i-th layer; see Figures 5(b), and 6(b). The thicknesses and the
material constants of all the four layers are assumed to be the same. Thus, in terms of the
non-dimensionalization, the material properties can be computed from Table 1 for the four
layers as:

for the Ni/ZrO2 FGM composite with m=n+2 (see Figure 5(b)),

m=−1·8866, n=−3·8866, a =1, b=bρ =0·14096,

ρ0 =1, µ0 =0·27537, λ0 =0·44926,
(29)

and for the ZrO2/Ni FGM composite with m=n+2, (see Figure 6(b)),

m=−1·8866, n=−3·8866, a =1, b=bρ =−0·12354,

ρ0 =1, µ0 =0·25370, λ0 =0·49260,
(30)
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Figure 6. (a) Variation of (τzz/po) with t in ZrO2/Ni FGM composite and in homogeneous layer at z = 0 under
fixed/free boundary conditions. (b) Variation of non-dimensional density (ρ), stiffness (c) and wave velocity (cp)

with z in ZrO2/Ni FGM composite.

The variation of the non-dimensional density, stiffness and dilatational wave velocity
through the non-dimensional thickness for the FGM composite bodies with material prop-
erties given in Equations (29) and (30) are, respectively, shown in Figures 5(b) and 6(b). Here
we should note that the propagation time of the plane wave (cp) through the thickness of the
plate (H =5 mm) is approximately 0·880 µs in pure nickel and 0·770 µs in pure zirconia.

In Figures 5(a) and 6(a), the variation of the dimensionless normal stress τzz/po with time
t for the Ni/ZrO2 FGM composite at z = 0·5 and for the ZrO2/Ni FGM composite at the
upper surface z=0 are shown. In Figures 5(a) and 6(a), the solutions represented by the solid
line correspond to those in a homogeneous layer with a =1 and bρ =b=0, i.e., the layers of
the multilayered medium are assumed to be made of pure nickel in Figure 5(a) and of pure
zirconia in Figure 6(a). Since the material constants of all the four layers are taken equal, the
curves in Figures 5(a), 6(a) represent solutions for a single layer.

This one-dimensional transient-wave-propagation problem has been solved, for a single layer,
in [13], using Laplace and Fourier transform techniques. There is a perfect agreement between
the two solutions; for an FGM plate we have found that the absolute relative percentage error
between our solutions and the analytical solutions (with m=n+ 2) presented in [13] does not
exceed 0·3%. We further note that the homogeneous solutions in Figures 5(a) and 6(a) agree
exactly with the known elasticity solution, as well as with the results presented in [13].

The curves of Figures 5(a) and 6(a) clearly show the effects of reflections at the top and
lower surfaces through the sudden changes in the stress levels. We note further that reflections
and refractions from the interfaces have disappeared; this is due to the fact that the material
properties at the interfaces are constant in the homogeneous layers; however, they are vary-
ing smoothly in the thickness direction in the functionally graded composites. Moreover, we
note that the stress levels in the homogeneous layer are less than those corresponding to the
Ni/ZrO2 FGM composite, Figure 5(a), and larger than those corresponding to the ZrO2/Ni
functionally graded composite; Figure 6(a). These deviations from the homogeneous material
are due to the fact that the lower boundary (z = 1), where the load is applied, is the stiffer
side in the ZrO2/Ni functionally graded composite, Figure 6(b), whereas, if z = 1 is the less
stiff side, the stress levels will be higher than the corresponding stresses in the homogeneous
layer; see Figure 5(b). We further observe that the time of arrival of the disturbances in the
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Figure 7. (a) Variation of (τzz/po) with non-dimensional time at z = 0·25 for composite medium I under free/free
boundary conditions. (b) Variation of non-dimensional density (ρ), stiffness (c) and wave velocity (cp) with z in
composite medium I.

Ni/ZrO2 composite is earlier, because the wave velocity of the homogeneous layer (cp = 1)
is less than that of the Ni/ZrO2 functionally graded composite; Figure 5(a). However, this
situation is reversed in the ZrO2/Ni composite, because the stress wave in the homogeneous
layer is traveling faster than that in the ZrO2/Ni functionally graded composite (see Figure
6(a)); this becomes more pronounced as time increases. We further note that, when the upper
boundary is free of surface traction, the applied compressive waves are reflected as tensile
waves from that boundary, Figure 5(a), and they are reflected as compressive waves when the
upper boundary is fixed; Figure 6(a).

4.2. Examples for multilayered functionally graded composites

The last three verification problems provide further confidence in the validity of the numeri-
cal technique employed in this study. In this example, we consider a composite consisting of
four FGM layers (N = 4), denoted as layers 1, 2, 3 and 4, with layer sequence starting from
the top layer, as 1/2/3/4. Two different multilayered media, named as I and II, are consid-
ered. For composite media I and II the four layers have the same material properties that are
given by Equations (29) and (30), respectively, but a for layers 3 and 4 is taken as a =1−b=
(1−0·14096)=0·85904 for composite medium I and as a =1−b= (1− (−0·12354))=1·12354
for composite medium II, where for both cases bρ = b. All the layers have the same thick-
nesses, i.e., h(i) =H/4=1/2. The upper surfaces (z=0) of the plane laminates are subjected in
time to the trapezoidal distribution shown in Figure 3(b), with e=0·2T and d =0·4T , where T

is a characteristic time defined by T =H/2c
(1)
p in which H (H =2) is the characteristic length

and c
(1)
p refers to the dilatational wave velocity on the top surface of the first layer. The varia-

tion of the non-dimensional density, stiffness and dilatational wave velocity through the non-
dimensional thickness for composites I and II are shown in Figures 7(b) and 8(b), respectively.
The curves of Figures 7(a) and 8(a), denoting the time variation of τzz/po at z=0·25, clearly
display the effects of reflections and refractions from the interface between layers 2 and 3.
We note that the applied compressive waves are reflected from the interface as compressive
waves in FGM laminate I and they are reflected as tensile waves in the FGM laminate II.
This is due to the fact that the bottom surface of layer 2 is stiffer than the top surface of layer
3 in composite material II, and this situation is reversed in composite material I. As time
increases, we further note that the stress amplitudes of the waves reflected or refracted from
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Figure 8. (a) Variation of (τzz/po) with non-dimensional time at z = 0·25 for composite medium II under free/free
boundary conditions. (b) Variation of non-dimensional density (ρ), stiffness (c) and wave velocity (cp) with z in
composite medium II.

the interfaces are becoming larger and larger; Figures 7(a) and 8(a). Similar trends observed
in Figures 5(a) and 6(a) due to reflections and refractions at the outer boundaries and due to
homogeneity effect are displayed in the curves of Figures 7(a) and 8(a) as well.

In a similar manner, we can easily treat problems involving more than two different FGM
layers. For example, we can consider a composite medium consisting of eight different layers
(N = 8), with a layer sequence starting from the top surface as, 1/2/3/4/5/6/7/8, whereas the
first two layers have the material properties given in Equation (29). In this case, the gradient
constant a can be taken as a = 1 − κb, where bρ = b = 0·14096 and κ = 0 for the first pair of
layers (layers 1 and 2), κ = 1 for the second pair of layers (layers 3 and 4) and κ = 2 and 3
for the last two pairs, respectively. Thus, the gradient constant a of a multilayered medium
consist of similar-repeated FGM layers can be found by the easy sequence discussed above.
This shows that the form selected in Equation (6) is suitable for a multilayered medium that
consists of more than one repeated FGM layer.

5. Conclusion

One-dimensional transient stress-wave propagation in multilayered functionally graded media
consisting of N different layers has been investigated. The material properties are assumed
to be varying smoothly in the thickness direction. By suitable adjusting the material proper-
ties, curves for homogeneous and linearly elastic multilayered media have also been obtained.
The method of characteristics is employed to obtain the solutions of the considered initial-
boundary-value problem. The results show that the applied numerical technique is capable of
predicting the sharp variations at the wave fronts without showing any sign of instability or
noise. Furthermore, this technique properly accounts for the effects caused by reflections and
refractions of waves at the boundaries and interfaces between the layers and the homogeneity
effects in the wave profiles.

Based on the results obtained for an FGM layer, one may conclude that, depending on
the material property grading, the location of the receiver point, boundary conditions and the
amplitude of the input pulse, the resultant stress amplitudes may be greater or less than those
applied at the boundary. It has been found that these amplitudes become less than those applied
at the upper surface, when the upper surface (z=0) is stiffer than the lower surface (z=H) and
become greater when the lower surface of an FGM layer is stiffer than the upper surface.
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The method of characteristics can be combined with Fourier or Laplace transforms and
used effectively in investigating two-dimensional transient dynamic response in multilayered
functionally graded media. Furthermore, it can be applied effectively in investigating wave
propagation through functionally graded materials exhibiting creep and relaxation under ele-
vated temperature conditions. This is known as a viscoelastic functionally graded material
whose mass density and stiffness are functions of a space variable and time. Our research in
these directions is in progress.
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